Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 22(9): e13914, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37357460

RESUMEN

Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are two major scavenger receptors of liver sinusoidal endothelial cells that mediate removal of diverse molecules from the plasma. Double-knockout mice (Stab-DKO) develop impaired kidney function and a decreased lifespan, while single Stabilin deficiency or therapeutic inhibition ameliorates atherosclerosis and Stab1-inhibition is subject of clinical trials in immuno-oncology. Although POSTN and TFGBI have recently been described as novel Stabilin ligands, the dynamics and functional implications of these ligands have not been comprehensively studied. Immunofluorescence, Western Blotting and Simple Western™ as well as in situ hybridization (RNAScope™) and qRT-PCR were used to analyze transcription levels and tissue distribution of POSTN and TGFBI in Stab-KO mice. Stab-POSTN-Triple deficient mice were generated to assess kidney and liver fibrosis and function in young and aged mice. TGFBI and POSTN protein accumulated in liver tissue in Stab-DKO mice and age-dependent in glomeruli of Stabilin-deficient mice despite unchanged transcriptional levels. Stab-POSTN-Triple KO mice showed glomerulofibrosis and a reduced lifespan comparable to Stab-DKO mice. However, alterations of the glomerular diameter and vascular density were partially normalized in Stab-POSTN-Triple KO. TGFBI and POSTN are Stabilin-ligands that are deposited in an age-dependent manner in the kidneys and liver due to insufficient scavenging in the liver. Functionally, POSTN might partially contribute to the observed renal phenotype in Stab-DKO mice. This study provides details on downstream effects how Stabilin dysfunction affects organ function on a molecular and functional level.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Células Endoteliales , Animales , Ratones , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Endoteliales/metabolismo , Riñón/metabolismo , Ligandos , Hígado/metabolismo , Ratones Noqueados , Receptores Depuradores/metabolismo
2.
Circulation ; 146(23): 1783-1799, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36325910

RESUMEN

BACKGROUND: Scavenger receptors Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are preferentially expressed by liver sinusoidal endothelial cells. They mediate the clearance of circulating plasma molecules controlling distant organ homeostasis. Studies suggest that Stab1 and Stab2 may affect atherosclerosis. Although subsets of tissue macrophages also express Stab1, hematopoietic Stab1 deficiency does not modulate atherogenesis. Here, we comprehensively studied how targeting Stab1 and Stab2 affects atherosclerosis. METHODS: ApoE-KO mice were interbred with Stab1-KO and Stab2-KO mice and fed a Western diet. For antibody targeting, Ldlr-KO mice were also used. Unbiased plasma proteomics were performed and independently confirmed. Ligand binding studies comprised glutathione-S-transferase-pulldown and endocytosis assays. Plasma proteome effects on monocytes were studied by single-cell RNA sequencing in vivo, and by gene expression analyses of Stabilin ligand-stimulated and plasma-stimulated bone marrow-derived monocytes/macrophages in vitro. RESULTS: Spontaneous and Western diet-associated atherogenesis was significantly reduced in ApoE-Stab1-KO and ApoE-Stab2-KO mice. Similarly, inhibition of Stab1 or Stab2 by monoclonal antibodies significantly reduced Western diet-associated atherosclerosis in ApoE-KO and Ldlr-KO mice. Although neither plasma lipid levels nor circulating immune cell numbers were decisively altered, plasma proteomics revealed a switch in the plasma proteome, consisting of 231 dysregulated proteins comparing wildtype with Stab1/2-single and Stab1/2-double KO, and of 41 proteins comparing ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO. Among this broad spectrum of common, but also disparate scavenger receptor ligand candidates, periostin, reelin, and TGFBi (transforming growth factor, ß-induced), known to modulate atherosclerosis, were independently confirmed as novel circulating ligands of Stab1/2. Single-cell RNA sequencing of circulating myeloid cells of ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO mice showed transcriptomic alterations in patrolling (Ccr2-/Cx3cr1++/Ly6Clo) and inflammatory (Ccr2+/Cx3cr1+/Ly6Chi) monocytes, including downregulation of proatherogenic transcription factor Egr1. In wildtype bone marrow-derived monocytes/macrophages, ligand exposure alone did not alter Egr1 expression in vitro. However, exposure to plasma from ApoE-Stab1-KO and ApoE-Stab2-KO mice showed a reverted proatherogenic macrophage activation compared with ApoE-KO plasma, including downregulation of Egr1 in vitro. CONCLUSIONS: Inhibition of Stab1/Stab2 mediates an anti-inflammatory switch in the plasma proteome, including direct Stabilin ligands. The altered plasma proteome suppresses both patrolling and inflammatory monocytes and, thus, systemically protects against atherogenesis. Altogether, anti-Stab1- and anti-Stab2-targeted therapies provide a novel approach for the future treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Monocitos , Animales , Ratones , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Endoteliales/metabolismo , Ligandos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Monocitos/metabolismo , Proteoma , Receptores Depuradores/metabolismo , Ratones Noqueados para ApoE
3.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35955449

RESUMEN

Aims: Some gene variants in the sodium channels, as well as calcium channels, have been associated with Brugada syndrome (BrS). However, the investigation of the human cellular phenotype and the use of drugs for BrS in presence of variant in the calcium channel subunit is still lacking. Objectives: The objective of this study was to establish a cellular model of BrS in the presence of a CACNB2 variant of uncertain significance (c.425C > T/p.S142F) using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and test drug effects using this model. Methods and results: This study recruited cells from a patient with Brugada syndrome (BrS) and recurrent ventricular fibrillation carrying a missense variant in CACNB2 as well as from three healthy independent persons. These cells (hiPSC-CMs) generated from skin biopsies of healthy persons and the BrS patient (BrS-hiPSC-CMs) as well as CRISPR/Cas9 corrected cells (isogenic control, site-variant corrected) were used for this study. The hiPSC-CMs from the BrS patient showed a significantly reduced L-type calcium channel current (ICa-L) compared with the healthy control hiPSC-CMs. The inactivation curve was shifted to a more positive potential and the recovery from inactivation was accelerated. The protein expression of CACNB2 of the hiPSC-CMs from the BrS-patient was significantly decreased compared with healthy hiPSC-CMs. Moreover, the correction of the CACNB2 site-variant rescued the changes seen in the hiPSC-CMs of the BrS patient to the normal state. These data indicate that the CACNB2 gene variant led to loss-of-function of L-type calcium channels in hiPSC-CMs from the BrS patient. Strikingly, arrhythmia events were more frequently detected in BrS-hiPSC-CMs. Bisoprolol (beta-blockers) at low concentration and quinidine decreased arrhythmic events. Conclusions: The CACNB2 variant (c.425C > T/p.S142F) causes a loss-of-function of L-type calcium channels and is pathogenic for this type of BrS. Bisoprolol and quinidine may be effective for treating BrS with this variant.


Asunto(s)
Síndrome de Brugada , Células Madre Pluripotentes Inducidas , Potenciales de Acción , Arritmias Cardíacas/metabolismo , Bisoprolol/farmacología , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Quinidina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...